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Abstract 
The quality of synthetic speech has advanced rapidly in the last 
decade. Unfortunately, the new technologies have rarely 
proven to be useful for the speech sciences community. The 
modern methods lack direct and accurate control over im-
portant speech properties such as formants - necessary for 
stimulus creation in the speech sciences. Consequently, stimu-
lus creation currently still relies on legacy methods that are 
typically based on task-specific signal processing. Conse-
quently, using manipulated stimuli with audible signal pro-
cessing artefacts may result in research findings that will not 
generalise to human perception of natural, artefact-free 
speech. 

This paper presents a recent system, Wavebender GAN, 
for manipulating phonetically meaningful speech properties 
via deep learning rather than custom-designed signal pro-
cessing. The system learns to manipulate arbitrary acoustic 
properties by training on speech data with property annota-
tions. As the system uses neural vocoders, advances in vocoder 
technology will automatically result in a more realistic output. 

As a demonstration, we train an example system that es-
sentially mimics a (deep learning-based) formant synthesiser. 
We present objective and subjective experiments that confirm 
the potential of our approach. We hope this work is a step to-
wards advanced modern tools for phoneticians and strengthens 
the dialogue between speech science and technology. 

Introduction 
Our best scientific models of human speech and speech 
perception are a product of a fruitful dialogue between 
speech scientists and engineers (Malisz et al., 2019). On 
the one hand, speech science helped synthesis get started 
(King, 2014), in that early formant synthesisers relied on 
established models of speech production and perception 
(Fant, 1960). Some aspects of this perception-based ap-
proach to modelling, such as the mel scale, remain 
widely used also in the current era of data-driven speech 
technology based on machine learning. On the other 
hand, insights into speech sciences, for example evi-
dence for categorical speech perception and speech per-
ception theory, were arrived at through listening tests on 
synthetic speech stimuli (Liberman & Mattingly, 1985). 

In recent decades, however, the two fields have 
taken different paths. Speech technology has focused on 
synthesising speech of the highest quality and realism, 
both with regards to speech waveform generation, e.g., 
van den Oord et al. (1996), Tamamori et al. (2017), Kong 
et al. (2020), and in text-to-speech (TTS), e.g., Shen et 
al. (2018). This, however, has come at the expense of 
controllability, by ceding control over the synthesis pro-
cess and fundamental properties of the generated speech 
to a machine-learning algorithm, instead of leveraging 
knowledge-based acoustic models. In particular, modern 
neural vocoders and TTS systems do not offer precise, 
frame-level control of important acoustic cues like pitch, 
formant frequencies, voice/phonation quality, etc. 

Many perceptual experiments in speech sciences re-
quire careful control over the above signal properties. 
Because modern speech technology does not offer such 

control, experiments need to rely on older techniques 
such as formant synthesis (Fant, 1960), e.g., using the 
system of Sjölander et al. (1998), or acoustic manipula-
tion methods like PSOLA (Moulines & Charpentier, 
1990) that do provide it. These necessary choices come 
with issues, e.g.: an inferior perceptual similarity to nat-
ural human speech, compared to modern speech technol-
ogy. There is a comprehensive body of research cata-
loguing important differences in how humans perceive 
natural speech recordings versus how they perceive syn-
thetic speech from legacy tools (Winters & Pisoni, 
2004). These results cast doubt on the generality of re-
search findings deduced from experiments that have used 
audibly unnatural-sounding speech stimuli from such 
tools. 

This paper presents Wavebender GAN (Döhler Beck 
et al., 2022), an approach to controllable speech synthe-
sis and manipulation of phonetically relevant speech 
properties that is based on deep learning rather than con-
ventional signal processing. The goal is to combine the 
affordances for precise control that speech scientists re-
quire with the exceptional realism offered by modern 
speech technology and obtain the best of both worlds. 
For our experiments, we demonstrate a proof-of-concept 
system that performs formant synthesis using neural 
nets. 

Related work 
The most important puzzle piece for the approach we de-
scribe is the rise of neural vocoders, e.g., Tamamori et al. 
(2017), Kong et al. (2020), which are deep-learning mod-
els trained to synthesise natural-sounding speech wave-
forms when given a mel-spectrogram as input. Good 
neural vocoders often require great computational re-
sources to train, but fortunately there are many pre-
trained neural vocoders available off the shelf. A partic-
ularly convincing one is HiFi-GAN (Kong et al., 2020), 
which we leverage for this work. 

It is possible to train neural vocoders to recreate re-
alistic waveforms from other speech representations than 
mel-spectrograms. Most relevant to Wavebender GAN is 
perhaps the work of Juvela et al. (2018), who reconstruct 
natural-sounding waveforms from only 20 mel-fre-
quency cepstrum coefficients (MFCCs) per frame of 
speech. Our work uses a related but different approach to 
further push the envelope and create convincing audio 
from only five numbers – the values of five different, 
perceptually relevant speech parameters – per frame of 
speech. Our solution makes use of a pre-trained neural 
vocoder to simplify the problem, where Wavebender 
GAN generates mel-spectrograms from the chosen 
speech parameters, and the vocoder then turns these mel-
spectra into an audio signal. 

Method 
We now give a high-level overview of Wavebender 
GAN and how one can create a Wavebender GAN 



system that enables speech synthesis and manipulation 
from an arbitrary set of speech parameters of interest. 
Additional technical details are provided in our main 
ICASSP paper (Döhler Beck et al., 2022). A graphical 
overview of Wavebender GAN training, synthesis, and 
evaluation is provided in Figure 1. 

Requisite data and data preparation 
Wavebender GAN is a method based on machine learn-
ing. To create a Wavebender GAN system that allows 
control over particular speech features (a.k.a. speech pa-
rameters) and that speaks in a particular voice, one needs 
training data for the machine to learn from. In this case, 
one needs studio-quality audio recordings from the rele-
vant speaker. These recordings have to be coupled with 
a log-magnitude mel-spectrogram (for driving a neural 
vocoder) along with regular annotations of the speech 
parameters of interest at the same frame rate as the mel-
spectrograms. These represent the outputs and the inputs 
of the machine learning, respectively. 

Annotations can be manual, or obtained using auto-
matic feature extractors. Although automatic feature ex-
traction can make errors, we expect the quality of these 
tools to improve over time, steadily providing better data 
from which to build Wavebender GAN systems. 

We found that data augmentation can improve re-
sults. This is a process of creating additional, synthetic 
training data (here parameter trajectories and matching 
mel-spectrograms) for machine learning. The synthetic 
data represents different parameter ranges and combina-
tions that are underrepresented in the data or in normal 
speech in general. In our experiments, such augmenta-
tion was particularly important for f0, but it also im-
proved the control over other speech properties not di-
rectly related to the specific augmentation used. 

Wavebender GAN 
A Wavebender GAN system consists of two subsystems, 
both trained using the data described above, but in dif-
ferent ways. Together, these produce plausible synthetic 
speech mel-spectrograms that express the phonetic char-
acteristics (speech parameter trajectories) provided as in-
put to the system. This spectrogram is then is passed to a 
suitable, pre-existing neural vocoder (off-the-shelf or be-
spoke) to create high-quality speech waveforms. 

The first subsystem, called Wavebender Net, is a var-
iant of a the popular ResNet architecture for image clas-
sification (He et al., 2016), but adapted to take time series 
of speech parameter as input and to return a mel-spectro-
gram as output. Initial Wavebender Net training mini-
mises a loss function called the XSigmoid loss, which is 
similar to minimising the squared error, but with greater 
robustness against issues such as outliers. 

By itself, a well-trained Wavebender Net produces 
mel-spectrograms that accurately express the speech pa-
rameters of interest. However, they are oversmoothed 
and lack the fine detail of natural speech acoustics. To 
improve this, we train a conditional generative adversar-
ial network (cGAN) (Mirza & Osindero, 2014) whose 
generator transforms the oversmoothed mel-spectro-
grams from Wavebender Net into similar, but more per-
ceptually realistic mel-spectrograms. This training uses 
the LS-GAN framework (Mao et al., 2017). The final 
Wavebender GAN system comprises the Wavebender 
Net and the cGAN generator put together. 

Experiments 
To study the abilities of the Wavebender GAN frame-
work in speech reconstruction and manipulation, we 
trained an example system and performed experiments 
on the LJ Speech database (Ito & Johnson, 2017), con-
taining 24 hours of text and speech in a female US Eng-
lish voice. 95% of the data was used for training and 5% 
for testing. 

For the experiments, we selected a core set of five 
phonetically meaningful speech parameters to drive the 
synthesiser, specifically f0 (including voicing), F1, F2, 
spectral centroid, and spectral slope. These features were 
extracted from the data using Surfboard (Lenain et al., 
2020), with Parselmouth (Jadoul et al., 2018) used for 
pitch manipulation as part of data augmentation. We 
evaluated the trained Wavebender GAN system in terms 
of both the control accuracy over speech properties, and 
in terms of subjective listener ratings of the naturalness 
of the synthesised speech. Evaluation details are availa-
ble in Döhler Beck et al. (2022); below follows a sum-
mary of the studies and their results. Example audio 
stimuli are available at the project webpage at URL 
https://gustavo-beck.github.io/wavebender-gan/. 
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Figure 1. Workflow and pipeline for model creation and evaluation. Square boxes are data, rounded are boxes systems. Wave-
forms are purple, mel-spectrograms blue, and phonetically-relevant speech parameters green. Components trained in this paper 
are orange/yellow whilst other ones are grey. Red text and arrows denote loss functions and error measures. 



Accuracy of reconstruction and manipulation 
In an experiment with copy synthesis, Wavebender GAN 
was able to reconstruct speech signals with speech pa-
rameters very similar to those provided as input (as con-
firmed by running Surfboard on the synthetic audio and 
comparing the resulting speech parameter trajectories to 
the input trajectories). Overall, the reconstruction errors 
were small. Even though Wavebender GAN uses a min-
imalist feature set and more networks and processing 
steps than HiFi-GAN, speech signals generated directly 
from mel-spectrograms using HiFi-GAN had very simi-
lar reconstruction errors as Wavebender GAN for all 
speech features. This suggests that the vocoder, despite 
providing good perceptual naturalness, is the main bot-
tleneck in terms of control accuracy. By improving the 
vocoder, we can expect improved control, especially for 
the formant frequencies, which had the biggest recon-
struction errors in our study, around 1 to 3 percent. 

After copy synthesis, we also studied the effect of 
manipulating different speech features in isolation, by 
scaling them up or down whilst keeping all other feature 
tracks the same as before. When applying a moderate 
amount of scaling (about 0.8 to 1.2), this did not majorly 
affect the error in the feature trajectories from the syn-
thetic audio, except when scaling up F2. A breakdown of 
the errors in different features for a scaling factor of 1.3, 
the most extreme case we studied, is available in Figure 
2. In the figure, F1 and F2 have the greatest errors (no 
matter whether manipulated or not) of up to 5% in the 
worst case. The figure suggests successful disentangle-
ment in most cases, since the reconstruction error of a 
given parameter changes little when manipulating other 
parameters, with the possible exception of increased F1 
error when manipulating F2. 

Subjective listening experiments 
We performed a blinded listening test where 29 
crowdsourced listeners were asked to rate the naturalness 
of reconstructed speech stimuli, using the classic MOS 
scale from 1 (bad) to 5 (excellent). (Manipulated speech 
was not considered here, since changes such as pitch ma-
nipulation can lead to intrinsically less natural speech au-
dio.) A natural speech stimulus was always provided as 

reference. Stimuli generated from parameter trajectories 
using Wavebender GAN reached a mean opinion score 
of 4.12±0.31, not far behind the state-of-the-art HiFi-
GAN neural vocoder, which scored 4.44±0.16 in the 
same evaluation. 

Impressions from informal listening to manipulated 
speech stimuli suggest good pitch manipulation and that 
formant manipulation changes vowel perception. Manip-
ulating the spectral centroid alters the perception of fric-
atives, for example producing a kind of lisp. This is con-
sistent with prior findings from phonetics, in that spectral 
moments acoustically define places of articulation in 
English fricatives (Jongman et al., 2000). 

Limitations 
Wavebender is a proof-of-concept system. As such, there 
remain a number of unaddressed questions on the road to 
practical tools for everyday use in speech sciences. An-
swering these questions offers opportunities for collabo-
rative research between technologists and phoneticians. 

First, we have not compared the manipulation accu-
racy or speech realism of our Wavebender GAN system 
to those offered by established legacy tools such as, e.g., 
PSOLA (Moulines & Charpentier, 1990) for pitch ma-
nipulation, or formant synthesis (Fant, 1960) for control-
ling formant frequencies. Informal listening suggests our 
system achieves similar perceptual naturalness as exist-
ing tools on pitch-manipulation tasks. Importantly, the 
mean opinion scores we achieved are substantially better 
than what we would expect from classic formant synthe-
sis as implemented in Praat (Boersma, 2001; Malisz et 
al. 2019). 

To create a Wavebender GAN system from scratch 
for a particular application requires a sizeable database 
of speech where, ideally, the properties of interest have 
been accurately annotated. Such datasets can be expen-
sive to create, and obtaining a large amount of data like 
this is not always feasible. This limitation can probably 
be overcome via first training a Wavebender GAN on 
one or more other voices with lots of data available, and 
then fine-tuning that initial model to match the speaker 
of interest, by continuing training only on data specifi-
cally from that speaker. This is a widely used deep-learn-
ing method for getting better results on small datasets. 
We hope to try this in the future, since a successful result 
would greatly extend the range of situations where the 
method can be applied. In general, the wide availability 
of large speech databases has enabled speech technology 
to generalise better to new situations without special 
training data, as shown by Lorenzo-Trueba et al. (2018). 

Finally, we have not directly verified the utility of 
Wavebender GAN for speech-sciences research. One 
way to do so would be to use Wavebender GAN to craft 
stimuli for a classic perceptual experiment such as cate-
gorical perception (Van Hessen et al. 1999) and then ver-
ify that reasonable conclusions result from that experi-
ment. Such validation is also future work. 

Conclusion 
We have argued that modern speech technology has 
overlooked the needs of speech scientists, and that recent 
advances in deep learning could be harnessed to provide 
better tools for audio stimulus creation in speech sci-
ences. This would enable greater perceptual similarity to 

Figure 2. The effect of a factor 1.3 scaling of a single feature 
(columns) on the relative MSE reconstruction error of any 
given feature (rows). Numbers are relative MSEs; the darker 
the shade the smaller the error. 



natural speech and a broader palette of phonetically and 
perceptually interesting speech-signal properties to con-
trol, without requiring bespoke signal processing ap-
proaches and reducing manual work. 

We have furthermore described a proof-of-concept 
system called Wavebender GAN that illustrates how 
these unmet needs can be addressed. Wavebender GAN 
is designed to be able to manipulate arbitrary speech-sig-
nal properties whilst still creating synthetic stimuli that 
sound like natural human speech. The system is based on 
deep learning, trained on a dataset of speech recordings 
and their corresponding speech-feature values of interest. 
We specifically study formant synthesis using neural vo-
coders as an example of the approach. Though several 
limitations remain to be addressed before a general-pur-
pose tool is obtained, our empirical results are encourag-
ing. Future advances in feature extraction and neural vo-
coders can only strengthen the approach. Our findings 
thus stake out a direction toward better speech technol-
ogy for speech scientists, and to a reinvigorated dialogue 
between the two communities. 
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